É FOGO (Parte 03/04)
O fogo é um fenômeno que interessa a físicos, químicos, matemáticos e até a economistas. Além das reações químicas previstas — sem falar das imprevistas —, acontecem também numa chama processos físicos como transporte de massa e energia, a difusão de calor e a emissão de radiação. Um dado importante que permite descobrir mais sobre uma chama é justamente a emissão de radiação luminosa. A cor da chama — uma combinação de temperatura com o tipo de elemento queimado — proporciona uma maneira de sondar o que está acontecendo na aparente confusão das labaredas.
A análise espectral, ou o estudo da luz emitida por uma substância, permite identificar os elementos que a compõem. Cada substância, ao queimar, causa uma chama de cor característica. O cobre, por exemplo, causa uma chama esverdeada; o sódio dá uma chama amarela. É nisso que se baseiam os fabricantes de fogos de artifício para proporcionar os espetáculos de multicolorida beleza. Descobertas pioneiras na área da espectroscopia foram realizadas por um químico e um físico trabalhando juntos — os alemães Robert Bunsen (1811-1899) e Gustav Robert Kirchhoff (1824-1887). Com os métodos espectroscópicos é possível determinar até a composição química das estrelas basta analisar a luz que emitem.
Quando o calor excita os átomos da substância que está queimando, o resultado é a luz. E quando um feixe de luz como o laser — intenso, de uma só cor — atravessa a chama, ele dá uma trombada nas moléculas que estiverem no caminho. A colisão ocorre em frações de segundo e o resultado é um espalhamento de luz, tão minúsculo que só é detectável por um espectroscópio ultrassensível. Mas essa pequena perturbação serve para identificar que molécula era aquela, precisamente. O fundamento teórico dessas sondas de laser é um efeito descoberto pelo físico indiano Chandrasekhar Vankata Raman (1888-1970), Prêmio Nobel de Física de 1930. O efeito Raman acontece quando uma luz monocromática, como o laser, atravessa um composto químico. Parte da luz, com a trombada, difunde-se em outras direções. E uma parte dessa luz desviada sofre modificação de frequência, ou seja, muda de cor.
Com essas técnicas é possível ir mapeando uma chama, ver quais são as áreas mais quentes e mais frias, por exemplo. Na chama de uma vela, a região próxima ao pavio não é tão quente a ponto de queimar a cera, mas é ali que esta se transforma em gás. O que queima efetivamente é o gás e sua produção constante alimenta a chama. Pois só há combustão quando há gás. Mesmo quando um líquido está queimando, o que ocorre é sua transformação em gás e a queima do gás. Outra técnica envolve o uso de três feixes de laser que convergem para a chama, formando um novo feixe que será “lido” por espectroscópios e computadores sofisticados.
As sondas de laser têm ajudado a enfrentar o problema dos poluentes de automóveis. Nos laboratórios Sandia, vinculados ao Departamento de Energia dos Estados Unidos, feixes de laser foram usados para vasculhar as entranhas de motores de automóveis a fim de localizar as áreas problemáticas. Constatou-se que em certas reentrâncias o combustível como que se escondia do oxigênio do ar. Embora gaseificado pelo calor da câmara de reação, o combustível escondido não entrava em combustão e acabava expelido na atmosfera pelo escapamento. Como resultado dessas pesquisas, os motores têm sido redesenhados para eliminar eventuais esconderijos de combustível.
Mas não é só a busca das melhores maneiras de queimar combustíveis que preocupa a ciência. Um aspecto da pesquisa com combustão igualmente importante — por óbvios motivos — é saber como evitar que as coisas peguem fogo. Até hoje não se entende direito o que acontece durante um incêndio numa floresta, por exemplo. Como se dá a realimentação do fogo? Como o ar se mistura com o combustível? Como um incêndio se propaga numa sala, em um edifício, em um avião?
Os laboratórios Sandia têm instalações no deserto, no Estado do Novo México, nos EUA, para estudar incêndios. O americano Walter Gill trabalhou ali e hoje está no Laboratório de Combustão e Propulsão do Instituto de Pesquisas Espaciais (INPE) em Cachoeira Paulista, São Paulo, o maior centro brasileiro de pesquisa na área. Gill seus colegas do Sandia queimavam tudo que podiam, de caminhões a vagões de trem. E o que não podiam queimar, como um porta-aviões, era objeto de simulações matemáticas.
Um navio desses é um verdadeiro barril de pólvora flutuante, repleto de gasolina de aviões, bombas, mísseis e aviões carregados com tudo isso. Um porta-aviões japonês teve um destino particularmente terrível na Segunda Guerra: o Taiho foi atingido por um torpedo, que causou pouco estrago pois o navio era blindado. Mas foi o suficiente para romper um tanque de gasolina, que se evaporou. Para eliminar os gases, o capitão do Taiho ordenou que se ligasse o sistema de ventilação. A resultante mistura de ar com combustível só precisou de uma faísca para explodir o navio.
0 Response to "É FOGO (Parte 03/04)"
Postar um comentário